The quantum symmetric XXZ chain at ∆ = − 12 , alternating sign matrices and plane partitions
نویسندگان
چکیده
We consider the groundstate wavefunction of the quantum symmetric antifer-romagnetic XXZ chain with open and twisted boundary conditions at ∆ = − 1 2 , along with the groundstate wavefunction of the corresponding O(n) loop model at n = 1. Based on exact results for finite-size systems, sums involving the wavefunc-tion components, and in some cases the largest component itself, are conjectured to be directly related to the total number of alternating sign matrices and plane partitions in certain symmetry classes. Very recently Razumov and Stroganov [1] have made some remarkable conjectures in which the number of n × n alternating sign matrices appear in certain properties of the ground state wavefunction of the antiferromagnetic XXZ Heisenberg chain at ∆ = −
منابع مشابه
On refined enumerations of totally symmetric self-complementary plane partitions II
In this paper we settle a weak version of a conjecture (i.e. Conjecture 6) by Mills, Robbins and Rumsey in the paper “Self-complementary totally symmetric plane partitions” J. Combin. Theory Ser. A 42, 277–292. In other words we show that the number of shifted plane partitions invariant under the involution γ is equal to the number of alternating sign matrices invariant under the vertical flip....
متن کاملA Connection between Alternating Sign Matrices and Totally Symmetric Self-Complementary Plane Partitions
We give a lattice path interpretation for totally symmetric self-complementary plane partitions. This is a first step in solving the long standing problem of enumerating such plane partitions. Another outstanding problem in enumerative combinatorics is the search for a bijection between alternating sign matrices and totally symmetric self-complementary plane partitions. From the lattice path in...
متن کاملTotally Symmetric Self-Complementary Plane Partitions and Alternating Sign Matrices
We present multiresidue integral formulae for partial sums in the basis of link patterns of the polynomial solution to the level 1 Uq(ŝl2) quantum Knizhnik–Zamolodchikov equation at generic values of the quantum parameter q. These allow for rewriting and generalizing a recent conjecture [Di Francesco ’06] connecting the above to generating polynomials for weighted Totally Symmetric Self-Complem...
متن کاملOn the Doubly Refined Enumeration of Alternating Sign Matrices and Totally Symmetric Self-Complementary Plane Partitions
We prove the equality of doubly refined enumerations of Alternating Sign Matrices and of Totally Symmetric Self-Complementary Plane Partitions using integral formulae originating from certain solutions of the quantum Knizhnik– Zamolodchikov equation. The authors thank N. Kitanine for discussions, and J.-B. Zuber for a careful reading of the manuscript. PZJ was supported by EU Marie Curie Resear...
متن کاملAlternating Sign Matrices and Descending Plane Partitions
An alternating sign matrix is a square matrix such that (i) all entries are 1,-1, or 0, (ii) every row and column has sum 1, and (iii) in every row and column the nonzero entries alternate in sign. Striking numerical evidence of a connection between these matrices and the descending plane partitions introduced by Andrews (Invent. Math. 53 (1979), 193-225) have been discovered, but attempts to p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008